Characterizing Ferroelectric Materials with Advanced PFM Methods
- Abstract number
- 401
- Presentation Form
- Poster
- DOI
- 10.22443/rms.mmc2023.401
- Corresponding Email
- [email protected]
- Session
- Poster Session Two
- Authors
- Dr Mickael Febvre (2), Dr Bede Pittenger (1), Dr Peter DeWolf (1)
- Affiliations
-
1. bruker
2. Bruker
- Keywords
AFM, PFM, Electrostatic force, nanoelectrical
- Abstract text
Piezoresponse force microscopy (PFM) is a powerful technique for studying ferroelectric materials due to the high sensitivity and nanometer-level resolution that it inherits from atomic force microscopy (AFM). PFM-based spectroscopic methods, such as switching spectroscopy PFM (SS-PFM) and DataCube™ PFM (DCUBE PFM), allow characterization of key parameters of ferroelectrics, such as coercive voltages, nucleation voltages, saturation responses, and more. Unfortunately, quantification and interpretation of PFM results can be complicated by artifacts. In this talk, we discuss the best modes and practices for optimizing PFM measurements to achieve reliable results.
A short overview will be provided of the many variants of PFM optimized to solve different problems and study different aspects of electromechanical response. Next, we will focus on the DCUBE PFM and SS-PFM modes and how they can help with many of these issues. Additionally, the benefits of both resonance and sub-resonance PFM are discussed along with how laser position can be optimized to improve measurement accuracy.
- References
1. Kalinin, S. v., Rodriguez, B. J., Jesse, S., Shin, J., Baddorf, A. P., Gupta, P., Jain, H.,
Williams, D. B., & Gruverman, A. (2006). Vector Piezoresponse Force Microscopy.
Microscopy and Microanalysis, 12(03), 206–220.
https://doi.org/10.1017/S1431927606060156
2. Hidaka, T., Maruyama, T., Saitoh, M., Mikoshiba, N., Shimizu, M., Shiosaki, T., Wills, L.
A., Hiskes, R., Dicarolis, S. A., & Amano, J. (1996). Formation and observation of 50
nm polarized domains in PbZr 1− x Ti x O 3 thin film using scanning probe microscope.
Applied Physics Letters, 68(17), 2358–2359. https://doi.org/10.1063/1.115857
3. Jesse, S., Baddorf, A. P., & Kalinin, S. v. (2006). Switching spectroscopy piezoresponse
force microscopy of ferroelectric materials. Applied Physics Letters, 88(6), 062908.
https://doi.org/10.1063/1.2172216
4. Vasudevan, R. K., Balke, N., Maksymovych, P., Jesse, S., & Kalinin, S. v. (2017).
Ferroelectric or non-ferroelectric: Why so many materials exhibit “ferroelectricity” on the
nanoscale. Applied Physics Reviews, 4(2), 021302. https://doi.org/10.1063/1.4979015
5. Balke, N., Maksymovych, P., Jesse, S., Herklotz, A., Tselev, A., Eom, C.-B., Kravchenko,
I. I., Yu, P., & Kalinin, S. v. (2015). Differentiating Ferroelectric and Nonferroelectric
Electromechanical Effects with Scanning Probe Microscopy. ACS Nano, 9(6), 6484–6492.
https://doi.org/10.1021/acsnano.5b02227
6. Balke, N., Jesse, S., Yu, P., ben Carmichael, Kalinin, S. v, & Tselev, A. (2016).
Quantification of surface displacements and electromechanical phenomena via dynamic
atomic force microscopy. Nanotechnology, 27(42), 425707.
https://doi.org/10.1088/0957-4484/27/42/425707
7. Neumayer, S. M., Saremi, S., Martin, L. W., Collins, L., Tselev, A., Jesse, S.,
Kalinin, S. v., & Balke, N. (2020). Piezoresponse amplitude and phase quantified for
electromechanical characterization. Journal of Applied Physics, 128(17), 171105.
https://doi.org/10.1063/5.0011631
8. Kim, S., Seol, D., Lu, X., Alexe, M., & Kim, Y. (2017). Electrostatic-free piezoresponse
force microscopy. Scientific Reports, 7(1), 41657. https://doi.org/10.1038/srep41657
9. Killgore, J. P., Robins, L., & Collins, L. (2022). Electrostatically-blind quantitative
piezoresponse force microscopy free of distributed-force artifacts.
Nanoscale Advances, 4(8), 2036–2045. https://doi.org/10.1039/D2NA00046F