Characterizing Ferroelectric Materials with Advanced PFM Methods

Abstract number
401
Presentation Form
Poster
DOI
10.22443/rms.mmc2023.401
Corresponding Email
[email protected]
Session
Poster Session Two
Authors
Dr Mickael Febvre (2), Dr Bede Pittenger (1), Dr Peter DeWolf (1)
Affiliations
1. bruker
2. Bruker
Keywords

AFM, PFM, Electrostatic force, nanoelectrical

Abstract text

Piezoresponse force microscopy (PFM) is a powerful technique for studying ferroelectric materials due to the high sensitivity and nanometer-level resolution that it inherits from atomic force microscopy (AFM). PFM-based spectroscopic methods, such as switching spectroscopy PFM (SS-PFM) and DataCube™ PFM (DCUBE PFM), allow characterization of key parameters of ferroelectrics, such as coercive voltages, nucleation voltages, saturation responses, and more. Unfortunately, quantification and interpretation of PFM results can be complicated by artifacts. In this talk, we discuss the best modes and practices for optimizing PFM measurements to achieve reliable results.

A short overview will be provided of the many variants of PFM optimized to solve different problems and study different aspects of electromechanical response. Next, we will focus on the DCUBE PFM and SS-PFM modes and how they can help with many of these issues. Additionally, the benefits of both resonance and sub-resonance PFM are discussed along with how laser position can be optimized to improve measurement accuracy.


References

1. Kalinin, S. v., Rodriguez, B. J., Jesse, S., Shin, J., Baddorf, A. P., Gupta, P., Jain, H.,

Williams, D. B., & Gruverman, A. (2006). Vector Piezoresponse Force Microscopy.

Microscopy and Microanalysis, 12(03), 206–220.

https://doi.org/10.1017/S1431927606060156

2. Hidaka, T., Maruyama, T., Saitoh, M., Mikoshiba, N., Shimizu, M., Shiosaki, T., Wills, L.

A., Hiskes, R., Dicarolis, S. A., & Amano, J. (1996). Formation and observation of 50

nm polarized domains in PbZr 1− x Ti x O 3 thin film using scanning probe microscope.

Applied Physics Letters, 68(17), 2358–2359. https://doi.org/10.1063/1.115857

3. Jesse, S., Baddorf, A. P., & Kalinin, S. v. (2006). Switching spectroscopy piezoresponse

force microscopy of ferroelectric materials. Applied Physics Letters, 88(6), 062908.

https://doi.org/10.1063/1.2172216

4. Vasudevan, R. K., Balke, N., Maksymovych, P., Jesse, S., & Kalinin, S. v. (2017).

Ferroelectric or non-ferroelectric: Why so many materials exhibit “ferroelectricity” on the

nanoscale. Applied Physics Reviews, 4(2), 021302. https://doi.org/10.1063/1.4979015

5. Balke, N., Maksymovych, P., Jesse, S., Herklotz, A., Tselev, A., Eom, C.-B., Kravchenko,

I. I., Yu, P., & Kalinin, S. v. (2015). Differentiating Ferroelectric and Nonferroelectric

Electromechanical Effects with Scanning Probe Microscopy. ACS Nano, 9(6), 6484–6492.

https://doi.org/10.1021/acsnano.5b02227

6. Balke, N., Jesse, S., Yu, P., ben Carmichael, Kalinin, S. v, & Tselev, A. (2016).

Quantification of surface displacements and electromechanical phenomena via dynamic

atomic force microscopy. Nanotechnology, 27(42), 425707.

https://doi.org/10.1088/0957-4484/27/42/425707

7. Neumayer, S. M., Saremi, S., Martin, L. W., Collins, L., Tselev, A., Jesse, S.,

Kalinin, S. v., & Balke, N. (2020). Piezoresponse amplitude and phase quantified for

electromechanical characterization. Journal of Applied Physics, 128(17), 171105.

https://doi.org/10.1063/5.0011631

8. Kim, S., Seol, D., Lu, X., Alexe, M., & Kim, Y. (2017). Electrostatic-free piezoresponse

force microscopy. Scientific Reports, 7(1), 41657. https://doi.org/10.1038/srep41657

9. Killgore, J. P., Robins, L., & Collins, L. (2022). Electrostatically-blind quantitative

piezoresponse force microscopy free of distributed-force artifacts.

Nanoscale Advances, 4(8), 2036–2045. https://doi.org/10.1039/D2NA00046F